blog-eletrogate-logo-desktop blog-eletrogate-logo-mobile
  • Categorias
    • Voltar
    • INICIANTES
    • INTERMEDIÁRIOS
    • AVANÇADOS
    • divide
    • Automação Residencial
    • Componentes Eletrônicos
    • Impressão 3D
    • IoT
    • Modelagem 3D
    • Módulos Wifi
    • Por trás da tecnologia
    • Projetos
    • Raspberry Pi
    • Robótica
    • Sensores
    • Shields
    • Sistemas Operacionais
    • Tipos de Arduino
    • Tutoriais
  • Apostilas
  • Quem Somos
  • Seja um redator
  • Trabalhe Conosco
    • Categorias
      • Voltar
      • INICIANTES
      • INTERMEDIÁRIOS
      • AVANÇADOS
      • divide
      • Automação Residencial
      • Componentes Eletrônicos
      • Impressão 3D
      • IoT
      • Modelagem 3D
      • Módulos Wifi
      • Por trás da tecnologia
      • Projetos
      • Raspberry Pi
      • Robótica
      • Sensores
      • Shields
      • Sistemas Operacionais
      • Tipos de Arduino
      • Tutoriais
    • Apostilas
    • Quem Somos
    • Seja um redator
    • Trabalhe Conosco
Loja Eletrogate
voltar
  • Introdução
  • Materiais Necessários para o Projeto Jogo em LCD no Arduino
  • Diagrama
  • Código
  • Bora Jogar!
  • Considerações Finais
  • Referência
  • Sobre o Autor
Projetos

Jogo em LCD no Arduino

Eletrogate 23 de setembro de 2020Atualizado em: 14 jun 2022

Introdução

A melhor maneira de aprender algo é se divertindo enquanto aprende, portanto, hoje, iremos desenvolver um jogo bastante simples porém extremamente divertido utilizando Arduino!

O jogo será feito em um LCD, e consiste em controlar um avatar, que chamaremos de “jogador”, e fazer com que ele pule obstáculos e alcance a maior distância possível. Você pode jogar esse mini game sozinho e tentar quebrar seus recordes ou jogar com amigos para ver quem é o melhor. E aí, vamos nessa?


Materiais Necessários para o Projeto Jogo em LCD no Arduino

Neste projeto, utilizaremos os seguintes materiais:

  • Arduino Uno
  • Potenciômetro de 10 KΩ
  • 1 resistor de 220 Ω
  • Push button 6x6x6 mm
  • Display LCD 16×2 azul
  • Jumpers
  • Protoboard

Diagrama

A seguir, é ilustrado o diagrama da montagem do jogo em LCD:

A montagem desse projeto é bem simples. O LCD mostrará o jogo, o push button será utilizado para fazer o jogador pular, e o potenciômetro serve apenas para regular a intensidade de luz do LCD.


Código

A implementação do código do jogo é a seguinte:

#include <LiquidCrystal.h>

#define PIN_BUTTON 2
#define PIN_AUTOPLAY 1
#define PIN_READWRITE 10
#define PIN_CONTRAST 12

#define SPRITE_RUN1 1
#define SPRITE_RUN2 2
#define SPRITE_JUMP 3
#define SPRITE_JUMP_UPPER '.'         // Use o caractere '.' para a cabea
#define SPRITE_JUMP_LOWER 4
#define SPRITE_TERRAIN_EMPTY ' '     
#define SPRITE_TERRAIN_SOLID 5
#define SPRITE_TERRAIN_SOLID_RIGHT 6
#define SPRITE_TERRAIN_SOLID_LEFT 7

#define HERO_HORIZONTAL_POSITION 1    // Posição horizontal do jogador na tela

#define TERRAIN_WIDTH 16
#define TERRAIN_EMPTY 0
#define TERRAIN_LOWER_BLOCK 1
#define TERRAIN_UPPER_BLOCK 2

#define HERO_POSITION_OFF 0          // O jogador está invisível
#define HERO_POSITION_RUN_LOWER_1 1  // Jogador está correndo na linha de baixo (pose 1)
#define HERO_POSITION_RUN_LOWER_2 2  //                              (pose 2)

#define HERO_POSITION_JUMP_1 3       // Começando a pular
#define HERO_POSITION_JUMP_2 4       // Metado do caminha pra cima
#define HERO_POSITION_JUMP_3 5       // Pulo está na linha de cima
#define HERO_POSITION_JUMP_4 6       // Pulo está na linha de cima
#define HERO_POSITION_JUMP_5 7       // Pulo está na linha de cima
#define HERO_POSITION_JUMP_6 8       // Pulo está na linha de cima
#define HERO_POSITION_JUMP_7 9       // Metado do caminho pra baixo
#define HERO_POSITION_JUMP_8 10      // Quase aterrisando

#define HERO_POSITION_RUN_UPPER_1 11 // O jogador está correndo na linha de cima (pose 1)
#define HERO_POSITION_RUN_UPPER_2 12 //                              (pose 2)

LiquidCrystal lcd(11, 9, 6, 5, 4, 3);
static char terrainUpper[TERRAIN_WIDTH + 1];
static char terrainLower[TERRAIN_WIDTH + 1];
static bool buttonPushed = false;

void initializeGraphics(){
  static byte graphics[] = {
    // Run position 1
    B01100,
    B01100,
    B00000,
    B01110,
    B11100,
    B01100,
    B11010,
    B10011,
    // Run position 2
    B01100,
    B01100,
    B00000,
    B01100,
    B01100,
    B01100,
    B01100,
    B01110,
    // Jump
    B01100,
    B01100,
    B00000,
    B11110,
    B01101,
    B11111,
    B10000,
    B00000,
    // Jump lower
    B11110,
    B01101,
    B11111,
    B10000,
    B00000,
    B00000,
    B00000,
    B00000,
    // Ground
    B11111,
    B11111,
    B11111,
    B11111,
    B11111,
    B11111,
    B11111,
    B11111,
    // Ground right
    B00011,
    B00011,
    B00011,
    B00011,
    B00011,
    B00011,
    B00011,
    B00011,
    // Ground left
    B11000,
    B11000,
    B11000,
    B11000,
    B11000,
    B11000,
    B11000,
    B11000,
  };
  int i;
  // Skip using character 0, this allows lcd.print() to be used to
  // quickly draw multiple characters
  for (i = 0; i < 7; ++i) {
      lcd.createChar(i + 1, &graphics[i * 8]);
  }
  for (i = 0; i < TERRAIN_WIDTH; ++i) {
    terrainUpper[i] = SPRITE_TERRAIN_EMPTY;
    terrainLower[i] = SPRITE_TERRAIN_EMPTY;
  }
}

// Slide the terrain to the left in half-character increments
//
void advanceTerrain(char* terrain, byte newTerrain){
  for (int i = 0; i < TERRAIN_WIDTH; ++i) {
    char current = terrain[i];
    char next = (i == TERRAIN_WIDTH-1) ? newTerrain : terrain[i+1];
    switch (current){
      case SPRITE_TERRAIN_EMPTY:
        terrain[i] = (next == SPRITE_TERRAIN_SOLID) ? SPRITE_TERRAIN_SOLID_RIGHT : SPRITE_TERRAIN_EMPTY;
        break;
      case SPRITE_TERRAIN_SOLID:
        terrain[i] = (next == SPRITE_TERRAIN_EMPTY) ? SPRITE_TERRAIN_SOLID_LEFT : SPRITE_TERRAIN_SOLID;
        break;
      case SPRITE_TERRAIN_SOLID_RIGHT:
        terrain[i] = SPRITE_TERRAIN_SOLID;
        break;
      case SPRITE_TERRAIN_SOLID_LEFT:
        terrain[i] = SPRITE_TERRAIN_EMPTY;
        break;
    }
  }
}

bool drawHero(byte position, char* terrainUpper, char* terrainLower, unsigned int score) {
  bool collide = false;
  char upperSave = terrainUpper[HERO_HORIZONTAL_POSITION];
  char lowerSave = terrainLower[HERO_HORIZONTAL_POSITION];
  byte upper, lower;
  switch (position) {
    case HERO_POSITION_OFF:
      upper = lower = SPRITE_TERRAIN_EMPTY;
      break;
    case HERO_POSITION_RUN_LOWER_1:
      upper = SPRITE_TERRAIN_EMPTY;
      lower = SPRITE_RUN1;
      break;
    case HERO_POSITION_RUN_LOWER_2:
      upper = SPRITE_TERRAIN_EMPTY;
      lower = SPRITE_RUN2;
      break;
    case HERO_POSITION_JUMP_1:
    case HERO_POSITION_JUMP_8:
      upper = SPRITE_TERRAIN_EMPTY;
      lower = SPRITE_JUMP;
      break;
    case HERO_POSITION_JUMP_2:
    case HERO_POSITION_JUMP_7:
      upper = SPRITE_JUMP_UPPER;
      lower = SPRITE_JUMP_LOWER;
      break;
    case HERO_POSITION_JUMP_3:
    case HERO_POSITION_JUMP_4:
    case HERO_POSITION_JUMP_5:
    case HERO_POSITION_JUMP_6:
      upper = SPRITE_JUMP;
      lower = SPRITE_TERRAIN_EMPTY;
      break;
    case HERO_POSITION_RUN_UPPER_1:
      upper = SPRITE_RUN1;
      lower = SPRITE_TERRAIN_EMPTY;
      break;
    case HERO_POSITION_RUN_UPPER_2:
      upper = SPRITE_RUN2;
      lower = SPRITE_TERRAIN_EMPTY;
      break;
  }
  if (upper != ' ') {
    terrainUpper[HERO_HORIZONTAL_POSITION] = upper;
    collide = (upperSave == SPRITE_TERRAIN_EMPTY) ? false : true;
  }
  if (lower != ' ') {
    terrainLower[HERO_HORIZONTAL_POSITION] = lower;
    collide |= (lowerSave == SPRITE_TERRAIN_EMPTY) ? false : true;
  }
  
  byte digits = (score > 9999) ? 5 : (score > 999) ? 4 : (score > 99) ? 3 : (score > 9) ? 2 : 1;
  
  // Draw the scene
  terrainUpper[TERRAIN_WIDTH] = '\0';
  terrainLower[TERRAIN_WIDTH] = '\0';
  char temp = terrainUpper[16-digits];
  terrainUpper[16-digits] = '\0';
  lcd.setCursor(0,0);
  lcd.print(terrainUpper);
  terrainUpper[16-digits] = temp;  
  lcd.setCursor(0,1);
  lcd.print(terrainLower);
  
  lcd.setCursor(16 - digits,0);
  lcd.print(score);

  terrainUpper[HERO_HORIZONTAL_POSITION] = upperSave;
  terrainLower[HERO_HORIZONTAL_POSITION] = lowerSave;
  return collide;
}

// Handle the button push as an interrupt
void buttonPush() {
  buttonPushed = true;
}

void setup(){
  pinMode(PIN_READWRITE, OUTPUT);
  digitalWrite(PIN_READWRITE, LOW);
  pinMode(PIN_CONTRAST, OUTPUT);
  digitalWrite(PIN_CONTRAST, LOW);
  pinMode(PIN_BUTTON, INPUT);
  digitalWrite(PIN_BUTTON, HIGH);
  pinMode(PIN_AUTOPLAY, OUTPUT);
  digitalWrite(PIN_AUTOPLAY, HIGH);
  
  // Digital pin 2 maps to interrupt 0
  attachInterrupt(0/*PIN_BUTTON*/, buttonPush, FALLING);
  
  initializeGraphics();
  
  lcd.begin(16, 2);
}

void loop(){
  static byte heroPos = HERO_POSITION_RUN_LOWER_1;
  static byte newTerrainType = TERRAIN_EMPTY;
  static byte newTerrainDuration = 1;
  static bool playing = false;
  static bool blink = false;
  static unsigned int distance = 0;
  
  if (!playing) {
    drawHero((blink) ? HERO_POSITION_OFF : heroPos, terrainUpper, terrainLower, distance >> 3);
    if (blink) {
      lcd.setCursor(0,0);
      lcd.print("Press Start");
    }
    delay(250);
    blink = !blink;
    if (buttonPushed) {
      initializeGraphics();
      heroPos = HERO_POSITION_RUN_LOWER_1;
      playing = true;
      buttonPushed = false;
      distance = 0;
    }
    return;
  }

  // Shift the terrain to the left
  advanceTerrain(terrainLower, newTerrainType == TERRAIN_LOWER_BLOCK ? SPRITE_TERRAIN_SOLID : SPRITE_TERRAIN_EMPTY);
  advanceTerrain(terrainUpper, newTerrainType == TERRAIN_UPPER_BLOCK ? SPRITE_TERRAIN_SOLID : SPRITE_TERRAIN_EMPTY);
  
  // Make new terrain to enter on the right
  if (--newTerrainDuration == 0) {
    if (newTerrainType == TERRAIN_EMPTY) {
      newTerrainType = (random(3) == 0) ? TERRAIN_UPPER_BLOCK : TERRAIN_LOWER_BLOCK;
      newTerrainDuration = 2 + random(10);
    } else {
      newTerrainType = TERRAIN_EMPTY;
      newTerrainDuration = 10 + random(10);
    }
  }
    
  if (buttonPushed) {
    if (heroPos <= HERO_POSITION_RUN_LOWER_2) heroPos = HERO_POSITION_JUMP_1;
    buttonPushed = false;
  }  

  if (drawHero(heroPos, terrainUpper, terrainLower, distance >> 3)) {
    playing = false; // The hero collided with something. Too bad.
  } else {
    if (heroPos == HERO_POSITION_RUN_LOWER_2 || heroPos == HERO_POSITION_JUMP_8) {
      heroPos = HERO_POSITION_RUN_LOWER_1;
    } else if ((heroPos >= HERO_POSITION_JUMP_3 && heroPos <= HERO_POSITION_JUMP_5) && terrainLower[HERO_HORIZONTAL_POSITION] != SPRITE_TERRAIN_EMPTY) {
      heroPos = HERO_POSITION_RUN_UPPER_1;
    } else if (heroPos >= HERO_POSITION_RUN_UPPER_1 && terrainLower[HERO_HORIZONTAL_POSITION] == SPRITE_TERRAIN_EMPTY) {
      heroPos = HERO_POSITION_JUMP_5;
    } else if (heroPos == HERO_POSITION_RUN_UPPER_2) {
      heroPos = HERO_POSITION_RUN_UPPER_1;
    } else {
      ++heroPos;
    }
    ++distance;
    
    digitalWrite(PIN_AUTOPLAY, terrainLower[HERO_HORIZONTAL_POSITION + 2] == SPRITE_TERRAIN_EMPTY ? HIGH : LOW);
  }
  delay(100);
}

O código utilizado aqui é relativamente complexo, portanto irei apenas explicar seu funcionamento geral. Basicamente, a implementação define quais leds irão acender no LCD dependendo da posição do jogador. Posteriormente, desenvolve-se todas as ações que o jogador pode ter dentro do jogo, juntamente com os obstáculos que ele terá que enfrentar. A lógica do jogo é bem simples, o jogador precisa apenas pular todos os obstáculos, porém grande parte do código foi utilizado simplesmente para determinar quais leds se acenderão, por isso sua grande extensão.


Bora Jogar!

Feito a montagem e a implementação do código, agora é só se divertir! Confira abaixo minha primeira experiência jogando. Será que você consegue bater meu recorde?

https://blog.eletrogate.com/wp-content/uploads/2020/09/video-jogo-lcd-final.mp4

Considerações Finais

Espero que tenha se divertido tanto montando e entendendo como jogando esse game. O Arduino, além de ter várias funcionalidades importantes, também pode e deve ser utilizado em momentos de descontração.

Quer aprender a desenvolver mais jogos em Arduino? Confira nossos posts relacionados e descubra mais!

  • Jogo do Reflexo: Divirta-se e melhore seus reflexos;
  • Não encoste no fio! – Jogo no Arduino.

Gostou do post? Avalie e deixe um comentário para sabermos o que achou.

Siga-nos também no Instagram e receba informações diárias sobre Arduino e eletrônica: @eletrogate.

Até logo!


Referência

  • Arduino LCD Game – Instructables;
  • Música do vídeo – Bensound.

Sobre o Autor


Ricardo Lousada
@ricardo_lousada

Graduando em Engenharia de Controle e Automação pela UFMG. Ocupo meu tempo aprendendo cada vez mais sobre eletrônica e programação, áreas que mais gosto. Meus hobbies são cinema e livros.


Eletrogate

23 de setembro de 2020 Atualizado em: 14 jun 2022

A Eletrogate é uma loja virtual de componentes eletrônicos do Brasil e possui diversos produtos relacionados à Arduino, Automação, Robótica e Eletrônica em geral.

Projetos

Irrigação Automática com Módulo Sensor de Umidade e Bomba Submersível

Eletrogate28 de junho de 2022

Você já esqueceu de molhar a sua planta algum dia? Se sim, esse post é perfeito para você!

Projetos

Irrigação Automática com Módulo Sensor de Umidade e Bomba Submersível

Eletrogate28 de junho de 2022

Você já esqueceu de molhar a sua planta algum dia? Se sim, esse post é perfeito para você!

Sensores

Como Utilizar o Sensor BMP280 com Arduino

Eletrogate23 de junho de 2022

O Sensor de Pressão e Temperatura BMP280 possui diversas aplicações e funcionalidades, como medir a pressão atmosférica e a temperatura ambiente.

Sensores

Como Utilizar o Sensor BMP280 com Arduino

Eletrogate23 de junho de 2022

O Sensor de Pressão e Temperatura BMP280 possui diversas aplicações e funcionalidades, como medir a pressão atmosférica e a temperatura ambiente.

Automação Residencial

Automatização do Processo de Brassagem

Eletrogate21 de junho de 2022

Este projeto foi desenvolvido para ser implementado junto à panela de brassagem. Essa ideia tem, como base, a automação de processos longos e repetitivos, que são essenciais, por exemplo, na produção de cerveja.

Automação Residencial

Automatização do Processo de Brassagem

Eletrogate21 de junho de 2022

Este projeto foi desenvolvido para ser implementado junto à panela de brassagem. Essa ideia tem, como base, a automação de processos longos e repetitivos, que são essenciais, por exemplo, na produção de cerveja.

IoT

Cotação de Moedas com HTTPClient e ESP32

Eletrogate16 de junho de 2022

Aprenda a criar um visualizador automático da cotação das moedas Dólar, Euro, Libra Esterlina, Peso Argentino, Bitcoin e Ethereum para a moeda Real. Essas serão obtidas através da biblioteca HTTPClient e visualizadas em um display OLED controlado por um ESP32.

IoT

Cotação de Moedas com HTTPClient e ESP32

Eletrogate16 de junho de 2022

Aprenda a criar um visualizador automático da cotação das moedas Dólar, Euro, Libra Esterlina, Peso Argentino, Bitcoin e Ethereum para a moeda Real. Essas serão obtidas através da biblioteca HTTPClient e visualizadas em um display OLED controlado por um ESP32.

Eletrogate Robô

Cadastre-se e fique por
dentro de novidades!

blog-eletrogate-logo-footer

Rua Rio de Janeiro, 441 - Sala 1301
Centro - Belo Horizonte/MG
CEP 30160-041
*Não temos atendimento físico

ANWAR SLEIMAN HACHOUCHE - ME
CNPJ: 18.917.521/0001-73

Atendimento

(31) 3142-3800

contato@eletrogate.com


Seg a Sex - das 8h às 17h

Institucional

  • Apostilas
  • Quem Somos
  • Privacidade
  • Seja um Redator
  • Trabalhe Conosco

Nos acompanhe

Facebook Instagram Youtube

© ELETROGATE 2022 - Todos os direitos reservados. Termos de uso e Política de privacidade.